Introduction to VHDL

Module #5 Digilent Inc. Course

Availability of CAD tools in the early 70's

- Picture-based schematic tools
- Text-based netlist tools
- Schematic tools dominated CAD through mid-1990's
 - Using a graphics editor to build a structural picture of a circuit was easy compared to typing a detailed, error-free netlist
 - expensive graphics-capable workstations
 - Designs not compatible between computers or CAD tools

Early text-based tools gained momentum

- Tools weren't tied to high-end computers
- Progress in IC fabrication made it possible to place more transistors on a chip
 - Schematic methods were not scaling very well
- A designer could specify the behavior of a circuit that requires several thousand logic gates
 - Several layout engineers need weeks or months to transfer that behavior to patterns of transistors.
- Increase in complexity require more engineers on larger teams
 - Much larger technical data shared between workers.

- 1981, U.S. DOD brought together a consortium of leading technical companies, and asked them to create a new "language" that could be used to precisely specify complex, high-speed integrated circuits.
 - detailed behavior of any digital circuit could be specified
- This work resulted in the advent of VHDL, an acronym for "Very-high-speed integrated-circuit Hardware Description Language".

- VHDL is used to provide a detailed design specification of a digital circuit
 - little thought given to how a circuit might be implemented
- A "synthesizer" produces a low-level, structural description of a circuit based on its VHDL description
 - Automated behavioral-to-structural translation
 - Reduced amount of human effort

Use of HDL and synthesizers revolutionized the way in which digital engineers work

- Early 1990s: very few new designs were started using HDLs (the vast majority were schematic based).
- Mid 1990's: roughly half of all new designs were using HDLs
- Today: all but the most trivial designs use HDL methods.

CAD Tools

Front-end tools

- Allow a design to be captured and simulated
- Virtual circuits
- Back-end tools
 - Synthesize a design, map it to a particular technology, and analyze its performance
 - Physical circuits
- Several companies offer CAD HDL tools
 - VHDL
 - Verilog

VHDL vs. Verilog

- Both are similar in appearance and application
- Both have their relative advantages.
- We will use VHDL because a greater number of educational resources have been developed for VHDL than for Verilog
- It should be noted that after learning one of the two languages, the other could be adopted quickly

Digital Design Today

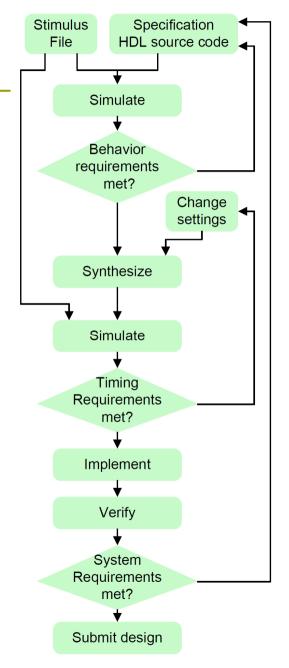
- HDLs have allowed design engineers to increase their productivity many fold in just a few years.
 - A well-equipped engineer today is as productive as a team of engineers a few years ago.
- To support this increased level of productivity, engineers must master a new set of design skills
 - Craft behavioral circuit definitions that meet design requirements
 - Understand synthesis so results can be interpreted
 - Model external interfaces to the design so that it can be verified
- The extra degree of abstraction that HDL allows brings many new sources of potential errors
 - Designers must be able to recognize and address such errors when they occur

- A behavioral circuit design is a description of how a circuit's outputs are to behave when its inputs are driven by logic values over time.
 - no information to indicate how a circuit might be constructed
- A structural circuit definition is essentially a plan, recipe, or blueprint of how a circuit is to be constructed
 - no information to indicate how a circuit might behave
- HDL Files: commonly a mixture of the two

- When a behavioral circuit is synthesized, the synthesizer must search through a large collection of template circuits, and apply a large collection of rules to try to create a structural circuit that matches the behavioral description.
 - The synthesis process can result in one of several alternative circuits being created due to the variability inherent in generating rule based solutions.
- When a structural description is synthesized, the synthesizer's job is a relatively straightforward, involving far fewer rules and inferences.
 - A post-synthesis structural circuit will closely resemble the original structural definition (preferred by designers)

- In general, it is far easier and less time consuming to define a given circuit using behavioral methods
 - Allow engineers to focus on high-level design considerations
 - Not allow engineers to control structure of final circuit.
 - Synthesizers must use rules that are applicable to wide range of circuits, and cannot be optimized for a particular circuit.
 - In some situations, engineers must have greater control over final structure of their circuits.
- Often, engineers start design with behavioral description so they can readily study the circuit and possible alternatives.
 - Once a particular design is chosen, it is recoded in structural form so synthesis becomes more predictable.

- Instead of using GUI to add gates and wires to a schematic, HDLs editors use a text editor to add structural or behavioral descriptions to a text file.
- Behavioral descriptions describe the conditions required for a given signal to take on a new value.
- Structural descriptions use components interconnected by signal names to create a netlist


Simulation and Synthesis

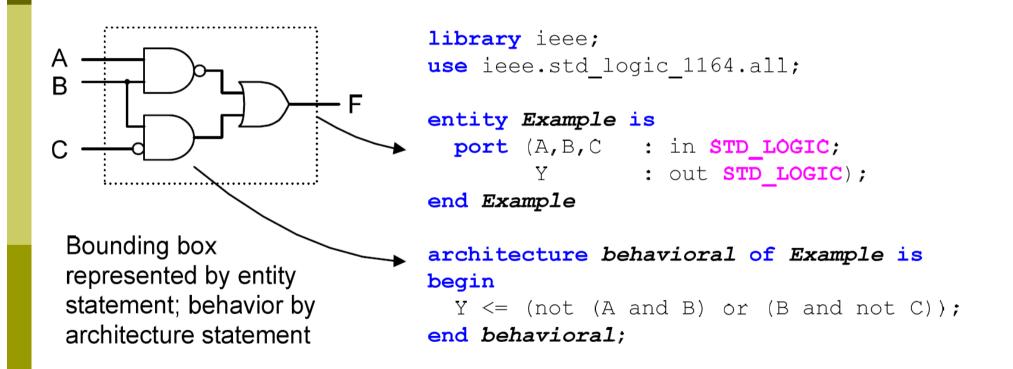
- A VHDL design can be simulated to check its behavior, and/or synthesized so that it can be implemented.
- These two functions, simulation and synthesis, are really separate functions that do not need to be related.
- In a typical flow, a new design would be simulated, then synthesized, and then simulated again after synthesis to ensure the synthesizer did not introduce any errors.

HDL Design Flow

During synthesis, designer can impose design constraints

- Power consumption
- Implementation area
- Operating speed
- Designers must understand synthesis process very well
 - Must be able to thoroughly analyze the postsynthesis circuit to make sure that all required specifications are met

Structure of VHDL Source Code

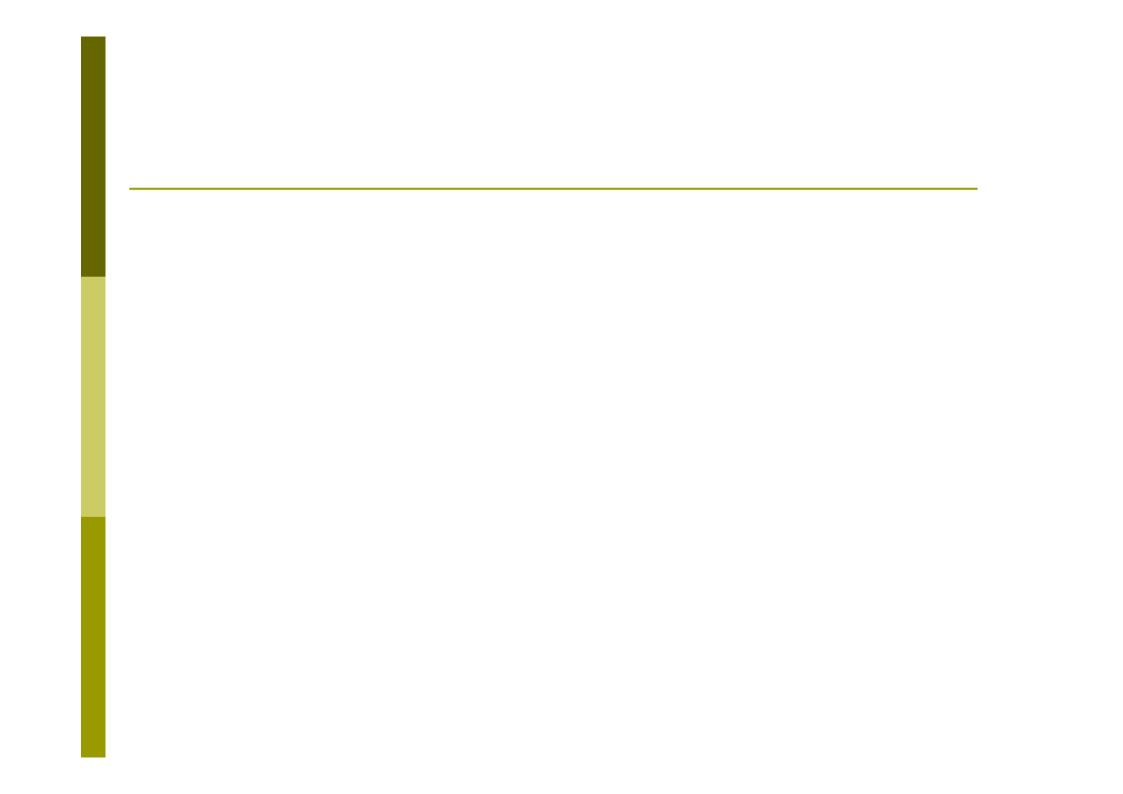

```
library ieee;
use ieee.std_logic_1164.all;
```

```
entity circuit_name is
    port (list of inputs, outputs and type);
end circuit_name;
```

architecture arch_name of circuit_name is
begin

(statements defining circuit go here); end arch_name;

VHDL Example


VHDL Syntax

- Port : input and output signals
- "std_logic" type: physical signals
- Other signal data types: abstract only
- Signal assignment operator "<=": indicate how an output signal is to be driven</p>
- □ "A <= B": signal A gets assigned signal B
 - VHDL simulator requires some time passes before signal is allowed to take new value
 - voltage on wire cannot change instantaneously
 - Different from C language

VHDL Syntax

VHLD code is inherently concurrent

- At any given time, several signal assignments may be pending.
- Cause-and-effect relationships are not a function of where a statement occurs in the VHDL code, but rather how time is modeled
- Signal assignment operators assign output signal new value based on a *function* that operates on input signals
 - and, or, nand, nor, xor, xnor, and not
 - Must be terminated with a semicolon.

