Equipment I Part 1 Covered Material

 

[Under Construction]

Home
News
Biography
Grad Student Info
Class Info
Publications
Useful Links

Part 1 Course Contents    

Download Handouts 

(Covered material that will be included in the exam are marked in Red color - other parts are not included)

Mechanics 1
Distances and Sizes 1                         
Forces and Translational Equilibrium 3             
Rotational Equilibrium 4                         
Vector Product 5
Force in the Achilles Tendon 6             
Forces on the Hip 7                 
The Use of a Cane 9             
Work 10                        
Stress and Strain 12         
Shear 13               
Hydrostatics 13         
Buoyancy 14             
Compressibility 15   
          
Viscosity 15             
Viscous Flow in a Tube 15             (only laminar flow phenomenon)
Pressure-Volume Work 18             
The Human Circulatory System 19             
Turbulent Flow and the Reynolds Number 21       
 

Exponential Growth and Decay 31           
Exponential Growth 31             
Exponential Decay 33             
Semilog Paper 34             
Variable Rates 35             
Clearance 36                 
Multiple Decay Paths 37                 
Decay Plus Input at a Constant Rate 38             
Decay with Multiple Half-Lives and Fitting Exponentials 38  
       
The Logistic Equation 39
Log-log Plots, Power Laws, and Scaling 39             
Log-log Plots and Power Laws 39                 
Food Consumption, Basal Metabolic Rate, and Scaling 40  
           
 

Systems of Many Particles 49             
Gas Molecules in a Box 50                 
Microstates and Macrostates 51             
The Energy of a System: The First Law of Thermodynamics 53             
Ensembles and the Basic Postulates 54           
Thermal Equilibrium 56 
                    
Entropy 58                                 
The Boltzmann Factor 58                 
The Nernst Equation 59                     
The Pressure Variation in the Atmosphere 60    
         
Equipartition of Energy and Brownian Motion 60
Heat Capacity 61
Equilibrium When Particles Can Be Exchanged: The Chemical Potential 61
Concentration Dependence of the Chemical Potential 62
Systems That Can Exchange Volume 63
Extensive Variables and Generalized Forces 64
The General Thermodynamic Relationship 64
The Gibbs Free Energy 65
Gibbs Free Energy 65
An Example: Chemical Reactions 66
The Chemical Potential of a Solution 67
Transformation of Randomness to Order 69
 

Transport in an Infinite Medium 81              
Flux, Fluence, and Continuity 81                    
Definitions 81                            
The Continuity Equation in One Dimension 82
            
The Continuity Equation in Three Dimensions 82
The Integral Form of the Continuity Equation 83
The Differential Form of the Continuity Equation 84   
The Continuity Equation with a Chemical Reaction 85
Drift or Solvent Drag 85                    
Brownian Motion 85                        
Motion in a Gas: Mean Free Path and Collision Time 85               

Motion in a Liquid 86                
Diffusion: Fick's First Law 87            
The Einstein Relationship Between Diffusion and Viscosity 89
Fick's Second Law of Diffusion 91        
Time-Independent Solutions 92
Example: Steady-State Diffusion to a Spherical Cell and End Effects 94
Diffusion Through a Collection of Pores, Corrected 95
Diffusion from a Sphere, Corrected 95
How Many Pores Are Needed? 96
Other Applications of the Model 96
Example: A Spherical Cell Producing a Substance 96
Drift and Diffusion in One Dimension 98
A General Solution for the Particle Concentration as a Function of Time 99
Diffusion as a Random Walk 100
 

Transport Through Neutral Membranes 111              
Membranes 111                    
Osmotic Pressure in an Ideal Gas 112           
Osmotic Pressure in a Liquid 114          
Some Clinical Examples 115            
Edema Due to Heart Failure 116            
Nephrotic Syndrome, Liver Disease, and Ascites 116        
Edema of Inflammatory Reaction 116            
Headaches in Renal Dialysis 116            
Osmotic Diuresis 116            

Osmotic Fragility of Red Cells 117
Volume Transport Through a Membrane 117
Solute Transport Through a Membrane 119
Example: The Artificial Kidney 120            
Countercurrent Transport 121   
                 
A Continuum Model for Volume and Solute Transport in a Pore 122
Volume Transport 123
Solute Transport 124
Summary 127
Reflection Coefficient 127
The Effect of Pore Walls on Diffusion 128
Net Force on the Membrane 128
 

Atoms and Light 359                             
The Nature of Light: Waves versus Photons 359                 
Atomic Energy Levels and Atomic Spectra 361                 
Molecular Energy Levels 362       

Scattering and Absorption of Radiation; Cross Section 364             
The Diffusion Approximation to Photon Transport 367
General Theory 367
Continuous Measurements 368
Pulsed Measurements 368
Refinements to the Model 369
Biological Applications of Infrared Scattering 369       
Near Infrared (NIR) 369                 
Optical Coherence Tomography (OCT) 370             
Raman Spectroscopy 371                     
Far Infrared or Terahertz Radiation 372           
Thermal Radiation 372                     
Infrared Radiation from the Body 375          
Atherosclerotic Coronary Heart Disease 376              
Blue and Ultraviolet Radiation 377              
Treatment of Neonatal Jaundice 377              
The Ultraviolet Spectrum 377              
Response of the Skin to Ultraviolet Light 378     
Ultraviolet Light Causes Skin Cancer 380              
Protection from Ultraviolet Light 380                  
Ultraviolet Light Damages the Eye 381             
Ultraviolet Light Synthesizes Vitamin D 381     
Ultraviolet Light Therapy 381             

Heating Tissue with Light 381             
Radiometry and Photometry 383         
Radiometric Definitions 383               
Photometric Definitions 387                 
Actinometric Definitions 388               
The Eye 388                                         

Quantum Effects in Dark-Adapted Vision 390
Symbols Used 392
Problems 393
References 397


Interaction of Photons and Charged Particles with Matter 401
Atomic Energy Levels and X-ray Absorption 401
Photon Interactions 403             
Photoelectric Effect 403             
Compton and Incoherent Scattering 403         
Coherent Scattering 403             
Inelastic Scattering 403                 
Pair Production 403                         
Energy Dependence 404                 
The Photoelectric Effect 404         
Compton Scattering 405             
Kinematics 405                               
Cross Section: Klein-Nishina Formula 406         
Incoherent Scattering 406                         
Energy Transferred to the Electron 407             
Coherent Scattering 407                     
Pair Production 407                         
The Photon Attenuation Coefficient 408     
Compounds and Mixtures 410             
Deexcitation of Atoms 410             

Energy Transfer from Photons to Electrons 412         
Charged-Particle Stopping Power 414         
Interaction with Target Electrons 418
Scattering from the Nucleus 421
Stopping of Electrons 422
Compounds 422
Linear Energy Transfer and Restricted Collision Stopping Power 422
Range, Straggling, and Radiation Yield 423
Track Structure 424
Energy Transferred and Energy Imparted; Kerma and Absorbed Dose 425
An Example 425
Energy Transferred and Kerma 427
Energy Imparted and Absorbed Dose 427
Net Energy Transferred, Collision Kerma, and Radiative Kerma 428
Charged-Particle Equilibrium 428
Radiation Equilibrium 428
Charged-particle Equilibrium 428
Buildup 429
Symbols Used 430
Problems 431
References 434


Medical Use of X Rays 437
Production of X Rays 437
Characteristic X Rays 437
Bremsstrahlung 438                   
Quantities to Describe Radiation Interactions 439
Radiation Chemical Yield 439
Mean Energy per Ion Pair 439
Exposure 440
Detectors 440
Film and Screens 440
Scintillation Detectors 442
Gas Detectors 444
Semiconductor Detectors 445
Thermoluminescent Dosimeters 445
Chemical Dosimetry 445
Digital Detectors 446
The Diagnostic Radiograph 446
X-ray Tube and Filter 446
Collimation 447
Attenuation in the Patient: Contrast Material 447
Antiscatter Grid 450
Film-Screen Combination 450
Computed and Direct Radiography 450
Image Quality 450
Angiography and Digital Subtraction Angiography 453
Mammography 453
Fluoroscopy 454
Computed Tomography 454
Biological Effects of Radiation 457
Cell-Culture Experiments 458
Chromosome Damage 458
The Linear-quadratic Model 460
The Bystander Effect 460
Tissue Irradiation 461
A Model for Tumor Eradication 463
Radiation Therapy 463
Classical Radiation Therapy 464
Modern X-ray Therapy 465
Charged Particles and Neutrons 465
Dose Measurement 467
The Risk of Radiation 468
Equivalent and Effective Dose 468
Comparison with Natural Background 469
Calculating Risk 470
Radon 472
Symbols Used 473
Problems 474
References 477


 

 

Send mail to ymk (at) k-space.org with questions or comments about this site.
Last modified: February 14, 2012