MCUniversity Course

[image: image35.png]

MCUniversity Course
Lab Exercises
2Lab Experiment 1

2Assembly Blinky

5Lab Experiment 2

5Assembly Multiplier

9C Blinky, System Clock, General Purpose I/O and Crossbar

14Lab Experiment 4

14Assembly Blinky Using Timers and ISRs

15Lab Experiment 5

15Timer Operations

20Lab Experiment 6

20Switch Debouncing

21Lab Experiment 7

21Serial Communication and LCD

27Lab Experiment 8

27Analog Comparators

32Lab Experiment 9

32Digital to Analog Converters

35Lab Experiment 10

35Analog to Digital Converters

Lab Experiment 1

Assembly Blinky

Learning Objectives/Tasks

· Get familiar with the Silicon Laboratories IDE and learn how to use it.
· Get familiar with the 8051 assembly language.
· Set ports as input/output.
· Make the LED at P5.4 blink at regular intervals.
· Control the speed of a blinking LED using delays.
Exercise

Using the code given below, you have to write a program that makes the Led blink at regular intervals. Use delay loops to control the blinking period. Get familiarized with the Silicon Laboratories IDE and the 8051 assembly language. Required approximate blinking frequency: 2.5 blinks/s. Hint: you can find the frequency by finding out the time it takes to execute the delay loop instructions. Assume that djnz takes 3 cycles to execute every time.
Example:

Number of times djnz instruction executed = 1000

Number of cycles = 3 * 1000 = 3000 cycles

Blinking Frequency = 2 MHz/3000 = 666.67 blinks/s

Note: 2 MHz is the microcontroller’s clock frequency.

Hint2: You will have to use multiple nested loops to be able to get a delay that is noticeable.

[image: image1]

[image: image2]
Lab Experiment 2

Assembly Multiplier

Learning Objectives/Tasks

· Enable/disable watchdog timer.
· Learn to perform 16-bit addition and multiplication in assembly.
Exercise A

Write a program that multiplies two 8-bit numbers. Type the program in the Silicon Laboratories, Inc. IDE and try it out. Use the following code to start.

Store the answer (in order of highest byte to lowest byte) in the registers R0-R1.

[image: image3]

[image: image4]
Exercise B

Using the code given above, write a program that adds two 16-bit numbers.
Hint:
1) Use the ADDC instruction to take care of the carry.
2) When two 16-bit numbers are added the answer can be a 17-bit number.
Note: If you are reusing the code given above, remember that Num1 and Num2 are 8 bit numbers. Replace them with the following:
Num11
equ
0x57

; high byte of first number

Num10
equ
0x37

; low byte of first number

Num21
equ
0x65 ; high byte of second number

Num20
equ
0xF0

; low byte of second number

Store the answer (in order of highest byte to lowest byte) in the registers R0-R2. The following is one method of adding two 16-bit numbers that you can use:
[image: image5.emf]Adding 59A7 and FD78: 59 A7

 FD 78

78+A7: 1 1F

 59

59+FD:

 FD

Solution: 1 57 1F

Exercise C

Write a program that multiplies two 16-bit numbers.

Store the answer (in order of highest byte to lowest byte) in the registers R0-R3. The following is one method of multiplying two 16-bit numbers that you can use:

[image: image6.emf]Multiplying 59A7 and FD78: 59 A7

 FD 78

78*A7: 4E 48

78*59: 29 B8

FD*A7: A5 0B

FD*59: 57 F5

Solution: 58 C4 11 48

Lab Experiment 3

C Blinky, System Clock, General Purpose I/O and Crossbar

Learning Objectives/Tasks

· Enable/disable internal and external system clock source.
· Program to run the internal clock at different frequencies (2 to 16 MHz).
· Configure port pins for input/output operations.
· Read from input port pins and write data to output port pins.
· Enable the digital crossbar.
· Enable/disable watchdog timer.
· Enable/disable missing clock detector .
· Control the speed of a blinking LED using

· Delays

· Different clock speeds

Exercise A

Write a program that makes the LED on P5.4 blink. Use a delay loop to control the blinking (on/off) period. The external crystal is used for the system clock. Type the program in the SiLab IDE and try it out. Use the following code to start off.

[image: image7]

[image: image8]

[image: image9]
Exercise A-2

Find out how many instructions and clock cycles it takes for the function init_Port to execute. Hint: You can find the number of instructions by using breakpoints and looking at the disassembly window.

Exercise B

Modify the program from Exercise A such that the internal oscillator is used to generate a system clock of 8 MHz.

Exercise C

Write a program that checks the status of Push Buttons (PB) connected to port pins P5.0 to P5.3 and turns on/off the corresponding LED connected to port pins P5.4 to P5.7 (If the PB on P5.0 is pressed then the LED (D1) at P5.4 is lit. If the PB on P5.1 is pressed then the LED (D2) at P5.5 is lit. If the PB on P5.2 is pressed then the LED (D3) at P5.6 is lit. If the PB on P5.3 is pressed then the LED (D4) at P5.7 is lit). Once the PB is released the LED is turned off.

Exercise D

Write a program that makes the 4 green LEDs (on P5.4 to P5.7) blink individually if the corresponding Push Buttons (on P5.0 to P5.3) are pressed and held (If the PB on P5.0 is pressed and held then the LED (D1) at P5.4 starts blinking. If the PB on P5.1 is pressed and held then the LED (D2) at P5.5 starts blinking. If the PB on P5.2 is pressed and held then the LED (D3) at P5.6 starts blinking. If the PB on P5.3 is pressed and held then the LED (D4) at P5.7 starts blinking). Use delay loops to control the blinking (on/off) period. Use the external crystal oscillator.

Exercise E

Write a program that checks the status of DIP Switches (SW) connected to port pins P4.4 to P4.7 and turns on the corresponding LED connected to port pins P5.4 to P5.7 (If the SW on P4.4 is on then the LED (D1) at P5.4 is lit. If the SW on P4.5 is on then the LED (D2) at P5.5 is lit. If the SW on P4.6 is on then the LED (D3) at P5.6 is lit. If the SW on P4.7 is on then the LED (D4) at P5.7 is lit).
Hint: Make sure you initialize Port 4 before you use DIP switches in the init_Port function.

Lab Experiment 4

Assembly Blinky Using Timers and ISRs

Learning Objectives/Tasks

· Blink the LED at P5.7 at the given interval.

· Use Timer 3 and an interrupt service routine to control the blinking period.

· Learn to use cseg and rseg directives.

Exercise A

Write a program that makes the LED on P5.7 blink at a rate of 2 blinks/s. Use Timer 3 and an interrupt service routine to control the blinking (on/off) period. Check the C8051F020 datasheet to find out where the ISR will begin executing for Timer 3. You can reuse code from Lab 1, but make sure you do not use the delay loops.

Hint: When implementing an ISR, you don’t put the ISR at the required address. Instead, you put the ISR in a relocatable segment (using rseg) and put an LJMP instruction to the ISR at the required address. This is done because there is only a few bytes of space after the first ISR address location before the next ISR’s address

Lab Experiment 5

Timer Operations

Learning Objectives/Tasks

· Configure/initialize timers to operate in different modes.

· Use timers in auto-reload mode to generate interrupts at fixed time intervals.

· Write timer Interrupt Service Routines (ISR) to handle interrupts.

· Program a timer to control the speed of a blinking LED.

· Program a timer to generate a PWM (Pulse Width Modulated) signal. The frequency and the duty cycle of the PWM cycle can be changed using switches. Use the PWM signal to control the intensity of an LED.

· Write code to view the PWM signal using the Virtual Oscilloscope on the PC.

Exercise A

Using the following program, write code that makes all the four green LEDs (on P5.4 to P5.7) blink together at a frequency of approximately 1.5 Hz. Use Timer 2 and interrupts to control the blinking (on/off) period. Use the internal 2 MHz oscillator for the system clock.

Exercise B

Modify the program of Exercise A such that it uses Timer 3 and interrupts to control the blinking (on/off) period of the four green LEDs (on P5.4 to P5.7). Use the external crystal oscillator for the system clock. The LEDs should blink at approximately 1 Hz.

Exercise C

Write a program to generate a Pulse Width Modulated (PWM) signal using Timer 0. The duty cycle of the PWM signal can be controlled by the DIP switches (on Port 4). Use the external crystal oscillator. The PWM signal is used to control the on/off of LED at P5.7.

(See notes on generating PWM signal at the end of the lab sheet.)

Exercise D

Modify the program of Exercise C such that the PWM signal can control the intensity of the LED at P5.7.

At a sufficiently high frequency of the PWM signal, the LED will appear to be always turned on, irrespective of the duty cycle. The intensity with which the LED glows will vary according to the duty cycle.

Exercise E

Modify the program of Exercise C to view the PWM signal on the ToolStick Virtual Oscilloscope. Refer to the User’s Guide on how to use the Virtual Oscilloscope. A sample output of the oscilloscope is shown below:

[image: image10]
Generating PWM Signal
[image: image35.png]
· Use Timer 0 in Auto-reload mode so that it overflows at a regular interval and generates an interrupt (software ‘tick’).

· The count is incremented in the Timer 0 Interrupt Service Routine (ISR).
· When the count value exceeds dutyCycleCount, the PWM Output is reset to 0.

· When the count value exceeds MAX_Count, the PWM Output is set to 1 and count is re-initialized to 0.

· PWM frequency may be changed by changing the MAX_Count or Ttick.
· 0 <= dutyCycleCount <= 4080

· Resolution of the duty cycle is 1/256 (approx. 0.39%).

· PWM output is at the digital output port pin P5.7.
· The PWM output pin must be configured in push-pull mode.

PWM Frequency: Timer 0 reload value

· For a desired PWM frequency, what should be the ‘tick time’ (Ttick)?

[image: image11.wmf]256

PWMtick

TT

=´

· For example, if Ttick = 10 Sec, then

[image: image12.wmf]10256 uSec

PWM

T

=´

[image: image13.wmf]11

390 Hz

10256

PWM

PWM

f

T

==

´

;

· To produce an interrupt at every 10 Sec, what should be the reload value of Timer 0?

· Using a System Clock of 22.1184 MHz

[image: image14.wmf]6

10

0.04521 uSec

22118400

sysclk

T

=

;

[image: image15.wmf]10

#Sysclk pulses221

0.04521

=

;

· Timer 0 reload value = 256 – 221 = 35

Lab Experiment 6

Switch Debouncing

Learning Objectives/Tasks

· Understand the need for switch debouncing and implement it to read key presses from the switches on the board.

· LEDs should light up in the manner given below as the push button at P5.0 is pushed.

· Understand that some debouncing techniques are superior to others

Exercise A

When a mechanical switch is closed its contacts rebound several times making and breaking contact in quick succession before settling down eventually. This phenomenon is termed as ‘switch bouncing’ and generates a jagged signal which, if not taken care of, will generate false edges for triggering and often cause embedded systems to malfunction.

The process of eliminating the bounces is called ‘debouncing’. Both hardware and software solutions exist.

Write a program that debounces the push button at P5.0. Implement an addition system, which turns on LEDs in an incremental order when the push button at P5.0 is pushed. A lit LED represents 1 and a turned-off LED represents 0. The 4 LEDs together represent a 4-bit number equal to the number of times the switch has been pressed. The LED at P5.7 represents the highest bit and the LED at P5.4 represents the lowest bit.

(If the push button is pressed once, the LED at P5.4 is lit, representing 1. If it is pressed again, the LED at P5.4 is turned off and the LED at P5.5 is turned on, representing 2. If it is pressed again, both the LEDs at P5.4 and P5.5 are turned on, representing 3. And so on and so forth.)

Lighting up the LEDs in this way allows you to see if bouncing is occurring. If bouncing is occurring the LEDs will not accurately represent the number of times you have pushed the button. Once your debouncing code works, the LEDs will turn on in the correct incremental order (where each push of the button adds 1 to the 4-bit number that the LEDs represent).

Lab Experiment 7

Serial Communication and LCD

Learning Objectives/Tasks

· Serial Communications using UART

· Configure/initialize UARTs to operate in Mode 1 (8-bit UART with Variable Baud rate).
· Use the ToolStick Terminal on the PC to communicate with the MCU.

· Write a program to receive a command from a PC and change the LED blinking speed.

· Implement a two-way communication between a micro-controller and a PC.
· Do not use the SilabsInit020 function from TS_vInterface.c.

· LCD Interface

· Send commands and data to the Virtual LCD on the PC using the LCD interface functions provided.

· Implement a simple objective-type quiz with four choices per question. Use the four push buttons on the daughter board to accept answers. Display the score at the end of the quiz session.

Refer to the User’s Guide to learn how to use the Virtual ToolStick system.

Exercise A

Write a program that lights up a green LED (on P5.4 to P5.7) based on the number (1 to 4) received from the ToolStick Virtual Display’s Terminal program. If a 0 is received, all the LEDs will be turned off. If the number received is not in the range 0 to 4, all the LEDs will blink a few times (say 2 or 3 times) and then turn off.

Use the external crystal oscillator 22.11845 MHz and Timer 1 (in Mode 2 8-bit auto-reload) to generate baudrate of 230400 for communication with the ToolStick Virtual Display program.

Use the functions TerminalRead and TerminalWrite from TS_vInterface.c for communication with the ToolStick Virtual Display program. The number received from the Terminal program should be echoed back to it.

The initialisation code for the UART0 is given below:

[image: image16]
The ToolStick Virtual display Terminal is shown below:

[image: image17]
Exercise B

Write a program that makes the 4 green LEDs (on P5.4 to P5.7) blink (all together). The blinking speed is controlled by a command character received from the ToolStick Virtual Display Terminal.

If the command character received is ‘n’ or ‘N’, the LEDs blink at the normal speed. If the command character received is ‘h’ or ‘H’, the LEDs blink at a high speed. If the command character received is incorrect, an error message (string of character) is sent back to the Terminal program.

Use Timer 3 and interrupts to control the blinking (on/off) period. Use external crystal oscillator.

The Terminal interface is shown below for an incorrect command received.

[image: image18]

Exercise C

Write a program which sends data to the ToolStick Virtual LCD Display. When a push button (on P5.0 to P5.3) is pressed, the corresponding LED (on P5.4 to P5.7) is turned on and a message string is sent to the Virtual LCD to indicate which push button (PB) has been pressed.

The ToolStick Virtual LCD display is shown below:

[image: image19]

[image: image20]
Exercise D

Write a program that implements a simple quiz with multiple choice questions (mcq). Use the ToolStick Virtual Display LCD for communication with the user. The question and four possible answers are shown one by one. The user indicates a correct answer by pressing the corresponding Push Button (PB). A message is displayed on the LCD to indicate whether the answer is correct or not. At the end of the test, the score is displayed.

Sample Virtual LCD displays are shown below:

(1) Display question and four possible answers:

[image: image21]

[image: image22]
(2) Message to show correct/in correct answer. This message is shown for a few seconds and the program proceeds to display the next question.

[image: image23]
(3) Message at the end of the test

[image: image24]
Lab Experiment 8

Analog Comparators

Learning Objectives/Tasks

· Configure/initialize DAC0 output to Vref/2

· Connect the DAC1 output to the CP1- input of Comparator1 using a jumper

· Connect the potentiometer to the CP1+ input of Comparator1 using a jumper

· Program the comparator to detect when the potentiometer voltage falls below or goes above Vref/2

· Detect using polling method

· Detect using comparator interrupt

· Indicate the current comparator output by lighting up one of two different LEDs

· Display detection of falling edge or rising edge using the Virtual LCD on the PC

Exercise A

Write a program to configure the DAC1 to output Vref/2. The DAC1 output is connected to the CP1- input of Comparator1 using a jumper on the daughter board. The potentiometer output (AIN0.2) is connected to the CP1+ input of Comparator1 using a jumper.

The program detects when the potentiometer voltage falls below or goes above Vref/2. The comparator output status is shown by lighting up one of two different LEDs (P5.4 and P5.5). The comparator output status is checked by polling it.

Implement a 10 mV positive and negative hysteresis.

Exercise B

Write a program to configure the DAC1 to output Vref/2. The DAC1 output is connected to the CP1- input of Comparator1 using a jumper on the daughter board. The potentiometer output (AIN0.2) is connected to the CP1+ input of Comparator1 using a jumper.

The program detects when the potentiometer voltage falls below or goes above Vref/2. The comparator output status is shown by lighting up one of two different LEDs (P5.4 and P5.5). Transition at the comparator output is detected by interrupts hence enable CP1 rising and falling edge interrupts (EIE1.6 and EIE1.7 bits).

Implement a 10m V positive and negative hysteresis.

Exercise C

Add code to the solution of Exercise A to display an appropriate message on the Virtual LCD. Sample outputs are shown below:

[image: image25.png]
[image: image26.png]
Exercise D

Add code to the solution of Exercise B to display an appropriate message on the Virtual LCD when the rising/falling edge is detected at the output of the comparator. Sample outputs are shown below:

[image: image27.png]
[image: image28.png]
The messages are displayed momentarily only when the edges are detected at the comparator output.

Lab Experiment 9

Digital to Analog Converters

Learning Objectives/Tasks

· Configure/initialize DAC

· Voltage reference

· Output scaling

· Output scheduling

· Program the DAC to generate a

· Triangular wave

· Sine wave

Exercise A

Write a program to generate a triangular waveform at the DAC1 output. The digital values presented at the DAC input are also displayed on the ToolStick Virtual oscilloscope. DAC output updates occur on a write to DAC1H.

The triangular waveform on the Virtual Oscilloscope is shown below:

[image: image29]
Exercise B

The following array is a sine wave lookup table. Using this array, write a program that outputs a sine wave using the DAC. Using an oscilloscope, observe the waveform at the DAC1 pin. Change the value of the constant FREQUENCY to change the frequency of the waveform.

[image: image30]
Lab Experiment 10

Analog to Digital Converters

Learning Objectives/Tasks

· Configure/initialize ADC

· Input channel selection

· Setting PGA gain

· Start-of-conversion

· Voltage reference

· Conversion clock frequency

· Reading ADC output using polling method.
· Reading ADC output using interrupt method.
· Use a potentiometer, connected to an analog input, to change the duty ratio of a PWM signal.
· View the ADC data graphically using the Virtual Oscilloscope on the PC.

· View the ADC data by sending it to the ToolStick Terminal.

· Measure the chip temperature using the on-board temperature sensor and display it on the Virtual LCD.

· Repeat the temperature measurement using an external thermistor connected to the “thermistor” header on the board.

Exercise A

Write a program which measures the potentiometer analog output (channel AIN0.2). Use Timer 3 overflow to initiate ADC0 conversion. ADC0 interrupt is disabled. ADC conversion completion is detected by polling. As the potentiometer is turned, the LEDs (P5.4 to P5.7) are lit one by one.

Exercise B

Write a program which measures the potentiometer analog output (channel AIN0.2). Use Timer 3 overflow to initiate ADC0 conversion. ADC0 interrupt is enabled and the ADC0 value is read in the ADC0 ISR. As the potentiometer is turned, the LEDs (P5.4 to P5.7) are lit one by one.

Exercise C

Write a program which generates a PWM signal using Timer 0 in auto-reload mode. The PWM signal controls the intensity of the four green LEDs. The PWM duty cycle (and hence the intensity of the LEDs) is to be controlled by the Potentiometer (AIN0.2). Program the ADC0 in Continuous Tracking Mode and conversion to be initiated by writing '1' to AD0BUSY. ADC0 interrupt is enabled and the ADC0 value is read in the ADC0 ISR.

Exercise D

Extend the program of Exercise A such that the measured data (potentiometer analog output at channel AIN0.2) is sent to the ToolStick Terminal. A screen shot of the ToolStick Terminal is shown below:

[image: image31]
Exercise E

Write a program that measures the output of the On-Chip Temperature Sensor. Use Timer 3 overflow to initiate ADC0 conversion. ADC0 interrupt is disabled. ADC conversion completion is detected by polling. The temperature value (ADC0 output) is displayed on the Virtual LCD.
Hint: The value you get from the temperature sensor is not the actual temperature. Remember to put in a decimal point in the value, as shown below:

[image: image32.png]
[image: image33.png]
Exercise F

Extend the program of Exercise D such that the measured data (potentiometer analog output at channel AIN0.2) is sent to the ToolStick Virtual Oscilloscope. A screen shot of the ToolStick Virtual Oscilloscope is shown below:

[image: image34]
$NOMOD51

;---

; Copyright (C) 2005 Silicon Laboratories, Inc.

; All rights reserved.

;

;

; FILE NAME : Lab1.ASM

; TARGET MCU : C8051F020

; DESCRIPTION : This program illustrates how to disable the watchdog timer,

; configure the Crossbar, configure a port and write to a port

; I/O pin.

;

; NOTES	 : You must write code to make the LED on P5.4 blink at regular

;		 intervals.

;

;---

$include (c8051f020.inc) ; Include register definition file

;---

; EQUATES

;---

GREEN_LED equ P5 ; Port I/O pin connected to Green LED

;---

; RESET and INTERRUPT VECTORS

;---

 cseg AT 0

 ljmp Main ; Locate a jump to the start of code at

 ; the reset vector

;---

; CODE SEGMENT

;---

Blink segment CODE

 rseg Blink ; Switch to this code segment.

 using 0 ; Specify register bank for the following

 ; program codeMain:

 ; Disable the WDT. (IRQs not enabled at

 ; this point)

 ; If interrupts were enabled, we would need

 ; to explicitly disable them so that the

 ; 2nd move to WDTCN occurs no more than

 ; four clock cycles after the first move to

 ; WDTCN

 mov WDTCN, #0DEh

 mov WDTCN, #0ADh

 ; Your code goes here.

 ; djnz: decrement operand and jump if not

 ; zero. For example: ‘djnz R6, Loop’: means

 ; decrement whatever value is in R6 and

 ; then if it is not zero than jump to Loop

 ; description of assembly instructions

;---

		 jmp $

END ; End of file.

$NOMOD51

;---

; Copyright (C) 2005 Silicon Laboratories, Inc.

; All rights reserved.

;

;

;

; FILE NAME : Lab2A.ASM

; TARGET MCU : C8051F020

; DESCRIPTION : This program performs a simple 8-bit multiplication.

;

; NOTES:

;

;---

$include (c8051f020.inc) ; Include register definition file.

;---

; EQUATES

;---

Num1 equ 250 ; Number to be multiplied	

Num2 equ	 57 ; Number to be multiplied

;---

; RESET and INTERRUPT VECTORS

;---

 ; Reset Vector

 cseg AT 0

 ljmp Main ; Locate a jump to the start of code at

 ; the reset vector.

;---

; CODE SEGMENT

;---

Mult8 segment CODE

 rseg Mult8 ; Switch to this code segment.

 using 0 ; Specify register bank for the following

 ; program code.

Main: ; Disable the WDT. (IRQs not enabled at

 ; this point.)

 ; If interrupts were enabled, we would

 ; need to explicitly disable them so that

 ; the 2nd move to WDTCN occurs no more

 ; than four clock cycles after the first

 ; move to WDTCN

 ; Your code starts here

;---

END ; End of file

// Filename : Lab3A.c

// This program flashes the green LED on the C8051F020 target board

#include <C8051F020_defs.h> // SFR declarations

//--

// Function PROTOTYPES

//--

void init_Clock(void); // System clock initialisation

void init_Port(void); // General system (ports) initialization

//---

// main() Routine

//---

void main(void)

{

 WDTCN = 0xDE; // Disable watchdog timer

 WDTCN = 0xAD;

 init_Clock();

 init_Port();

 while (1)

 {

 // Your code goes here. You can use

 // additional functions if you want to

 }

}

void init_Clock(void)

{

 OSCXCN = 0x67; // External Osc Freq Control Bits (Bits

 // 2-0; XFCN2-0) set to 111 because

 // crystal frequency > 6.7 MHz

 // Crystal Oscillator Mode (Bits 6-4;

 // XOSCMD2-0) set to 110

// OSCXCN = 0x77;	 // If you want Crsytal Osc. Mode with

 // divide by 2 stage

 while ((OSCXCN & 0x80) == 0);	 // Wait till XTLVLD pin is set

 // Program the INTERNAL Oscillator

 // Control Register

 OSCICN = 0x88;

			 // Bit 2 : Internal Osc. disabled	

 // Bit 3 : Uses External Oscillator as

 // System Clock

 // Bit 7 : Missing Clock Detector Enabled

}		

//---

// PORT_Init

//---

//

// Return Value : None

// Parameters : None

//

// This function configures the crossbar and GPIO ports.

//---

void init_Port(void)

{

 XBR0 = 0x00;

 XBR1 = 0x00;

 XBR2 = 0x40; // Enable the crossbar, weak pullups

 // enabled

 // To disable weak pull-ups, XBR2 = 0xC0;

 // Port configuration (0 = Open Drain

 // Output, 1 = Push Pull Output)

 P0MDOUT = 0x00; // Output configuration for P0

 P1MDOUT = 0x00; // Output configuration for P1

 P2MDOUT = 0x00; // Output configuration for P2

 P3MDOUT = 0x00; // Output configuration for P3

	

 // Port 7-4 I/O Lines

 P74OUT = 0x08; // Output configuration for P7-4

 // Bit 3 : (P5[7:4] Push Pull) - 4 LEDs

 // (output)

 // Bit 2 : (P5[3:0] Open Drain) – 4

 // Push-Button Switches (input)

 // Bit 1-0 : (P4 Open Drain) - 8 DIP

 // Switches (input)

 P5 |= 0x0F; // Write a logic 1 to those pins which

 // are to be used for input

}

� EMBED Word.Picture.8 ���

void Init_UART0(void)

{

 // Set up Timer 1 to generate the baud

 // rate (230400) for UART0

 // Timer 1 uses the system clock

 // 22.11845 MHz

 // Timer 1 in Mode 2 (8-bit auto-reload)

TH1 = 0xFA; // Baudrate = 230400

 // Start Timer 1 (TCON.6 = 1)

 // Set up the UART0

 // SMOD0=1 (UART0 baud rate divide-by-2

 // disabled)

 // UART0 Mode 1, Logic level of stop bit

 // ignored and Receive enabled

 // Clear the receive interrupt flag;

 // ready to receive more

 // Set transmit interrupt

}

// A full cycle, 16-bit, 2's complement sine wave lookup table

int code SINE_TABLE[256] =

{

 0x0000, 0x0324, 0x0647, 0x096a, 0x0c8b, 0x0fab, 0x12c8, 0x15e2,

 0x18f8, 0x1c0b, 0x1f19, 0x2223, 0x2528, 0x2826, 0x2b1f, 0x2e11,

 0x30fb, 0x33de, 0x36ba, 0x398c, 0x3c56, 0x3f17, 0x41ce, 0x447a,

 0x471c, 0x49b4, 0x4c3f, 0x4ebf, 0x5133, 0x539b, 0x55f5, 0x5842,

 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e8, 0x66cf, 0x68a6,

 0x6a6d, 0x6c24, 0x6dca, 0x6f5f, 0x70e2, 0x7255, 0x73b5, 0x7504,

 0x7641, 0x776c, 0x7884, 0x798a, 0x7a7d, 0x7b5d, 0x7c29, 0x7ce3,

 0x7d8a, 0x7e1d, 0x7e9d, 0x7f09, 0x7f62, 0x7fa7, 0x7fd8, 0x7ff6,

 0x7fff, 0x7ff6, 0x7fd8, 0x7fa7, 0x7f62, 0x7f09, 0x7e9d, 0x7e1d,

 0x7d8a, 0x7ce3, 0x7c29, 0x7b5d, 0x7a7d, 0x798a, 0x7884, 0x776c,

 0x7641, 0x7504, 0x73b5, 0x7255, 0x70e2, 0x6f5f, 0x6dca, 0x6c24,

 0x6a6d, 0x68a6, 0x66cf, 0x64e8, 0x62f2, 0x60ec, 0x5ed7, 0x5cb4,

 0x5a82, 0x5842, 0x55f5, 0x539b, 0x5133, 0x4ebf, 0x4c3f, 0x49b4,

 0x471c, 0x447a, 0x41ce, 0x3f17, 0x3c56, 0x398c, 0x36ba, 0x33de,

 0x30fb, 0x2e11, 0x2b1f, 0x2826, 0x2528, 0x2223, 0x1f19, 0x1c0b,

 0x18f8, 0x15e2, 0x12c8, 0x0fab, 0x0c8b, 0x096a, 0x0647, 0x0324,

 0x0000, 0xfcdc, 0xf9b9, 0xf696, 0xf375, 0xf055, 0xed38, 0xea1e,

 0xe708, 0xe3f5, 0xe0e7, 0xdddd, 0xdad8, 0xd7da, 0xd4e1, 0xd1ef,

 0xcf05, 0xcc22, 0xc946, 0xc674, 0xc3aa, 0xc0e9, 0xbe32, 0xbb86,

 0xb8e4, 0xb64c, 0xb3c1, 0xb141, 0xaecd, 0xac65, 0xaa0b, 0xa7be,

 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b18, 0x9931, 0x975a,

 0x9593, 0x93dc, 0x9236, 0x90a1, 0x8f1e, 0x8dab, 0x8c4b, 0x8afc,

 0x89bf, 0x8894, 0x877c, 0x8676, 0x8583, 0x84a3, 0x83d7, 0x831d,

 0x8276, 0x81e3, 0x8163, 0x80f7, 0x809e, 0x8059, 0x8028, 0x800a,

 0x8000, 0x800a, 0x8028, 0x8059, 0x809e, 0x80f7, 0x8163, 0x81e3,

 0x8276, 0x831d, 0x83d7, 0x84a3, 0x8583, 0x8676, 0x877c, 0x8894,

 0x89bf, 0x8afc, 0x8c4b, 0x8dab, 0x8f1e, 0x90a1, 0x9236, 0x93dc,

 0x9593, 0x975a, 0x9931, 0x9b18, 0x9d0e, 0x9f14, 0xa129, 0xa34c,

 0xa57e, 0xa7be, 0xaa0b, 0xac65, 0xaecd, 0xb141, 0xb3c1, 0xb64c,

 0xb8e4, 0xbb86, 0xbe32, 0xc0e9, 0xc3aa, 0xc674, 0xc946, 0xcc22,

 0xcf05, 0xd1ef, 0xd4e1, 0xd7da, 0xdad8, 0xdddd, 0xe0e7, 0xe3f5,

 0xe708, 0xea1e, 0xed38, 0xf055, 0xf375, 0xf696, 0xf9b9, 0xfcdc,

};

Page 11 of 33

[image: image36.emf]

ticks

c

ount

PWM

Output

dutyCycleCount

MAX_count = 256

t

ON

T

PWM

T

tick

[image: image37.png][image: image38.png][image: image39.png][image: image40.png][image: image41.png][image: image42.png][image: image43.png][image: image44.png][image: image45.png][image: image46.png][image: image47.png][image: image48.png][image: image49.emf]

ticks

c

ount

PWM

Output

dutyCycleCount

MAX_count = 256

t

ON

T

PWM

T

tick

_1150187437.unknown

_1150188420.unknown

_1150188503.unknown

_1241091473.doc

ticks

PWM

Counter

PWM

Output

dutyCycleCount

MAX_count = 256

tON

TPWM

Ttick

_1150187532.unknown

_1150187078.unknown

